Определение вида химической связи в веществах. Типы химических связей: ионная, ковалентная, металлическая

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

Вконтакте

Что такое ионы

Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

Механизм образования

Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

Схема соединения

На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

Отличия от ковалентного типа

Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

Также она может характеризоваться еще несколькими свойствами:

  1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
  2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

Вещества с ионной связью

Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

  • хлориды натрия и калия,
  • фторид цезия,
  • оксид магния.

Также она может проявляться и в сложных соединениях.

Например, сульфат магния.

Перед вами формула вещества с ионной и ковалентной связью:

Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

Что такое ионная связь в химии

Виды химической связи — ионная, ковалентная, металлическая

Вывод

Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH).

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + , где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

Понятие химической связи имеет немаловажное значение в различных областях химии как науки. Связано это с тем, что именно с ее помощью отдельные атомы способны соединяться в молекулы, образуя всевозможные вещества, которые, в свою очередь, являются предметом химических исследований.

С многообразием атомов и молекул связано возникновение различных типов связей между ними. Для разных классов молекул характерны свои особенности распределения электронов, а значит, и свои виды связей.

Основные понятия

Химической связью называют совокупность взаимодействий, которые приводят к связыванию атомов с образованием устойчивых частиц более сложного строения (молекул, ионов, радикалов), а также агрегатов (кристаллов, стекол и прочего). Природа этих взаимодействий носит электрический характер, а возникают они при распределении валентных электронов в сближающихся атомах.

Валентностью принято называть способность того или иного атома образовывать определенное число связей с другими атомами. В ионных соединениях за значение валентности принимают число отданных или присоединенных электронов. В ковалентных соединениях она равна количеству общих электронных пар.

Под степенью окисления понимают условный заряд, который мог бы быть на атоме, если бы все полярные ковалентные связи имели бы ионный характер.

Кратностью связи называют число обобществленных электронных пар между рассматриваемыми атомами.

Связи, рассматриваемые в различных разделах химии, можно разделить на два вида химических связей: те, которые приводят к образованию новых веществ (внутримолекулярные), и те, которые возникают между молекулами (межмолекулярные).

Основные характеристики связи

Энергией связи называют такую энергию, которая требуется для разрыва всех имеющихся связей в молекуле. Также это энергия, выделяющаяся в ходе образования связи.

Длиной связи именуют такое расстояние между соседними ядрами атомов в молекуле, при котором силы притяжения и отталкивания уравновешены.

Эти две характеристики химической связи атомов являются мерой ее прочности: чем меньше длина и больше энергия, тем связь прочнее.

Валентным углом принято называть угол между представляемыми линиями, проходящими по направлению связи через ядра атомов.

Методы описания связей

Наиболее распространены два подхода к объяснению химической связи, заимствованные из квантовой механики:

Метод молекулярных орбиталей. Он рассматривает молекулу в качестве совокупности электронов и ядер атомов, причем каждый отдельно взятый электрон движется в поле действия всех других электронов и ядер. Молекула имеет орбитальное строение, а все ее электроны распределены по этим орбитам. Также этот метод носит название МО ЛКАО, что расшифровывается как "молекулярная орбиталь - линейная комбинация

Метод валентных связей. Представляет молекулу системой двух центральных молекулярных орбиталей. При этом каждая из них соответствует одной связи между двумя расположенными по соседству атомами в молекуле. Основывается метод на следующих положениях:

  1. Образование химической связи осуществляется парой электронов, имеющих противоположные спины, которые расположены между двумя рассматриваемыми атомами. Образованная электронная пара принадлежит двум атомам в равной степени.
  2. Число связей, образованных тем или иным атомом, равняется числу неспаренных электронов в основном и возбужденном состоянии.
  3. Если электронные пары не принимают участия в образовании связи, то их называют неподеленными.

Электроотрицательность

Определить тип химической связи в веществах можно, основываясь на разнице в значениях электроотрицательностей составляющих ее атомов. Под электроотрицательностью понимают способность атомов оттягивать на себя общие электронные пары (электронное облако), что приводит к поляризации связи.

Существуют различные способы определения значений электроотрицательностей химических элементов. Однако наиболее применяемой является шкала, основанная на термодинамических данных, которая была предложена еще в 1932 году Л. Полингом.

Чем значительнее разница в электроотрицательностях атомов, тем в большей степени проявляется ее ионность. Напротив, равные или близкие значения электроотрицательности указывают на ковалентный характер связи. Иначе говоря, определить, какая химическая связь наблюдается в той или иной молекуле, можно математически. Для этого нужно вычислить ΔХ - разность электроотрицательностей атомов по формуле: ΔХ=|Х 1 2 |.

  • Если ΔХ>1,7, то связь является ионной.
  • Если 0,5≤ΔХ≤1,7, то ковалентная связь носит полярный характер.
  • Если ΔХ=0 или близка к нему, то связь относится к ковалентной неполярной.

Ионная связь

Ионной называется такая связь, которая появляется между ионами или за счет полного оттягивания общей электронной пары одним из атомов. В веществах этот тип химической связи осуществляется силами электростатического притяжения.

Ионы - это заряженные частицы, образующиеся из атомов в результате присоединения или отдачи электронов. Если атом принимает электроны, то приобретает отрицательный заряд и становится анионом. Если же атом отдает валентные электроны, то становится положительно заряженной частицей, называемой катионом.

Она характерна для соединений, образованных при взаимодействии атомов типичных металлов с атомами типичных неметаллов. Основной этого процесса является стремление атомов приобрести устойчивые электронные конфигурации. А типичным металлам и неметаллам для этого нужно отдать или принять всего 1-2 электрона, что они с легкостью и делают.

Механизм образования ионной химической связи в молекуле традиционно рассматривают на примере взаимодействия натрия и хлора. Атомы щелочного металла с легкостью отдают электрон, перетягиваемый атомом галогена. В результате образуется катион Na + и анион Cl - , которые удерживаются рядом с помощью электростатического притяжения.

Идеальной ионной связи не существует. Даже в таких соединениях, которые зачастую относят к ионным, окончательного перехода электронов от атома к атому не происходит. Образованная электронная пара все-таки остается в общем пользовании. Поэтому говорят о степени ионности ковалентной связи.

Ионная связь характеризуется двумя основными свойствами, связанными друг с другом:

  • ненаправленность, т. е. электрическое поле вокруг иона имеет форму сферы;
  • ненасыщаемость, т. е. число противоположно заряженных ионов, которое может разместиться вокруг какого-либо иона, определяется их размерами.

Ковалентная химическая связь

Связь, образующаяся при перекрывании электронных облаков атомов неметаллов, то есть осуществляющаяся общей электронной парой, называется ковалентной связью. Число обобществленных пар электронов определяет кратность связи. Так, атомы водорода связаны одинарной связью Н··Н, а атомы кислорода образуют двойную связь О::О.

Существует два механизма ее образования:

  • Обменный - каждый атом представляет для образования общей пары по одному электрону: А· + ·В= А:В, при этом в осуществлении связи участвуют внешние атомные орбитали, на которых расположены по одному электрону.
  • Донорно-акцепторный - для образования связи один из атомов (донор) предоставляет пару электронов, а второй (акцептор) - свободную орбиталь для ее размещения: А + :В= А:В.

Способы перекрывания электронных облаков при образовании ковалентной химической связи также различны.

  1. Прямое. Область перекрывания облаков лежит на прямой воображаемой линии, соединяющей ядра рассматриваемых атомов. При этом образуются σ-связи. От типа электронных облаков, подвергающихся перекрыванию, зависит вид химической связи, которая при этом возникает: s-s, s-p, p-p, s-d или p-d σ-связи. В частице (молекуле или ионе) между двумя соседними атомами возможно осуществление только одной σ-связи.
  2. Боковое. Осуществляется по обе стороны от линии, соединяющей ядра атомов. Так образуется π-связь, причем также возможны ее разновидности: p-p, p-d, d-d. Отдельно от σ-связи π-связь никогда не образуется, она может быть в молекулах, содержащих кратные (двойные и тройные) связи.

Свойства ковалентной связи

Именно ими определяются химические и физические особенности соединений. Главными свойствами любой химической связи в веществах является ее направленность, полярность и поляризуемость, а также насыщаемость.

Направленностью связи обусловлены особенности молекулярного строения веществ и геометрическая форма их молекул. Суть ее состоит в том, что наилучшее перекрывание электронных облаков возможно при определенной их ориентации в пространстве. Выше уже рассмотрены варианты образования σ- и π-связи.

Под насыщаемостью понимают способность атомов образовывать определенное число химических связей в молекуле. Количество ковалентных связей для каждого атома ограничивается числом внешних орбиталей.

Полярность связи зависит от разницы в значениях электроотрицательностей атомов. От нее зависит равномерность распределения электронов между ядрами атомов. Ковалентная связь по данному признаку может быть полярной или неполярной.

  • Если общая электронная пара в равной степени принадлежит каждому из атомов и расположена от их ядер на одинаковом расстоянии, то ковалентная связь является неполярной.
  • Если же общая пара электронов смещается к ядру одного из атомов, то образуется ковалентная полярная химическая связь.

Поляризуемость выражается смещением электронов связи под действием внешнего электрического поля, которое может принадлежать другой частице, соседним связям в той же молекуле или исходить от внешних источников электромагнитных полей. Так, ковалентная связь под их влиянием может менять свою полярность.

Под гибридизацией орбиталей понимают изменение их форм при осуществлении химической связи. Это необходимо для достижения наиболее эффективного их перекрывания. Существуют следующие виды гибридизации:

  • sp 3 . Одна s- и три p-орбитали образуют четыре "гибридные" орбитали одинаковой формы. Внешне напоминает тетраэдр с углом между осями 109°.
  • sp 2 . Одна s- и две p-орбитали образуют плоский треугольник с углом между осями 120°.
  • sp. Одна s- и одна p-орбиталь образуют две "гибридные" орбитали с углом между их осями 180°.

Особенностью строения атомов металлов является довольно большой радиус и наличие небольшого количества электронов на внешних орбиталях. Вследствие этого в таких химических элементах связь ядра и валентных электронов относительно слаба и легко разрывается.

Металлической связью называют такое взаимодействие между атомами-ионами металлов, которое осуществляется с помощью делокализованных электронов.

В частицах металла валентные электроны могут легко покидать внешние орбитали, как, впрочем, и занимать вакантные места на них. Таким образом, в разные моменты времени одна и та же частица может быть атомом и ионом. Оторвавшиеся от них электроны свободно перемещаются по всему объему кристаллической решетки и осуществляют химическую связь.

Этот тип связи имеет сходства с ионной и ковалентной. Так же как и для ионной, для существования металлической связи необходимы ионы. Но если для осуществления электростатического взаимодействия в первом случае нужны катионы и анионы, то во втором роль отрицательно заряженных частиц играют электроны. Если сравнивать металлическую связь с ковалентной, то для образования обеих необходимы общие электроны. Однако, в отличие от полярной химической связи, они локализованы не между двумя атомами, а принадлежат всем частицам металла в кристаллической решетке.

Металлической связью обусловлены особенные свойства практически всех металлов:

  • пластичность, присутствует благодаря возможности смещения слоев атомов в кристаллической решетке, удерживаемых электронным газом;
  • металлический блеск, который наблюдается из-за отражения световых лучей от электронов (в порошкообразном состоянии нет кристаллической решетки и, значит, перемещающихся по ней электронов);
  • электропроводность, которая осуществляется потоком заряженных частиц, а в данном случае мелкие электроны свободно перемещаются среди крупных ионов металла;
  • теплопроводность, наблюдается благодаря способности электронов переносить теплоту.

Этот тип химической связи иногда называют промежуточной между ковалентной и межмолекулярным взаимодействием. Если атом водорода имеет связь с одним из сильно электроотрицательных элементов (таких как фосфор, кислород, хлор, азот), то он способен образовывать дополнительную связь, называемую водородной.

Она гораздо слабее всех рассмотренных выше типов связей (энергия не более 40 кДж/моль), но пренебрегать ею нельзя. Именно поэтому водородная химическая связь на схеме выглядит в виде пунктирной линии.

Возникновение водородной связи возможно благодаря донорно-акцепторному электростатическому взаимодействию одновременно. Большая разница в значениях электроотрицательности приводит к появлению избыточной электронной плотности на атомах О, N, F и других, а также к ее недостатку на атоме водорода. В том случае если между такими атомами нет существующей химической связи, при их достаточно близком расположении активизируются силы притяжения. При этом протон является акцептором электронной пары, а второй атом - донором.

Водородная связь может возникать как между соседними молекулами, например, воды, карбоновых кислот, спиртов, аммиака, так и внутри молекулы, например, салициловой кислоты.

Наличием водородной связи между молекулами воды объясняется ряд ее уникальных физических свойств:

  • Значения ее теплоемкости, диэлектрической проницаемости, температур кипения и плавления в соответствии с расчетами должны быть значительно меньше реальных, что объясняется связанностью молекул и необходимостью затрачивать энергию на разрыв межмолекулярных водородных связей.
  • В отличие от других веществ, при понижении температуры объем воды увеличивается. Это происходит благодаря тому, что молекулы занимают определенное положение в кристаллической структуре льда и отдаляются друг от друга на длину водородной связи.

Особую роль эта связь играет для живых организмов, поскольку ее наличием в молекулах белков обуславливается их особая структура, а значит, и свойства. Кроме того, нуклеиновые кислоты, составляя двойную спираль ДНК, также связаны именно водородными связями.

Связи в кристаллах

Подавляющее большинство твердых тел имеет кристаллическую решетку - особое взаимное расположение образующих их частиц. При этом соблюдается трехмерная периодичность, а в узлах располагаются атомы, молекулы или ионы, которые соединены воображаемыми линиями. В зависимости от характера этих частиц и связей между ними все кристаллические структуры делят на атомные, молекулярные, ионные и металлические.

В узлах ионной кристаллической решетки находятся катионы и анионы. Причем каждый из них окружен строго определенным числом ионов только с противоположным зарядом. Типичный пример - хлорид натрия (NaCl). Для них обычны высокие температуры плавления и твердость, так как для их разрушения требуется много энергии.

В узлах молекулярной кристаллической решетки расположены молекулы веществ, образованные ковалентной связью (например, I 2). Связаны они друг с другом слабым ван-дер-ваальсовым взаимодействием, а следовательно, такую структуру легко разрушить. Такие соединения имеют низкие температуры кипения и плавления.

Атомную кристаллическую решетку образуют атомы химических элементов, обладающих высокими значениями валентности. Связаны они прочными ковалентными связями, а значит, вещества отличаются высокими температурами кипения, плавления и большой твердостью. Пример - алмаз.

Таким образом, все типы связей, имеющихся в химических веществах, имеют свои особенности, которыми объясняются тонкости взаимодействия частиц в молекулах и веществах. От них зависят свойства соединений. Ими обуславливаются все процессы, происходящие в окружающей среде.